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Abstract. Starting from an assumption of ergodicity, the macroscopic description of a 
relativistic gas in terms of an energy-momentum tensor and four-currents for different 
particle types is obtained by summation over particles and time averaging. As a result of 
relativistic particle kinematics the formalism becomes covariant, and ergodicity as defined 
here is shown to be a Lorentz invariant concept. 

1. Introduction 

Special relativistic statistical mechanics is a discipline which has developed only recently. 
Nevertheless so many papers have been devoted to it already that we can cite only a 
selection (Msller 1968, van Kampen 1969, Nakajima 1969, Balescu and Brenig 1971, 
Stewart 1971). We want to present here some elementary considerations concerning 
the simplest possible system: a gas of particles confined to a box. We found it ad- 
vantageous to follow the ergodic approach, thus defining time-independent (ie, 
equilibrium) quantities which describe the gas macroscopically by means of time 
averaging. The methods thus developed should be applicable to more interesting 
situations, too. 

The main point of the paper is that by using the new idea of a state indicator which is 
attached to the box enclosing the system, and which can be read by any observer, the 
‘state of a system’ becomes a rather clear Lorentz invariant concept (0 2). In the usual 
way of looking at this problem the state of a system is a more complicated idea. This 
arises from the relativity of simultaneity which leads to different observers combining 
the motions of the constituent particles differently to arrive at their idea of ‘the state of 
the system’. The preferred frame of reference provided by the rest frame of the box is 
thus given due importance in our work. However, one must still sum over the particles, 
taking relativistic kinematics correctly into account. This is achieved by the kinematic 
weight factors of 8 3. The emergence of familiar results in this section (eg equations (3.4) 
and (3.5)) by matching macroscopic and microscopic methods thus leads to confidence 
in our approach. The definition of the rest frame I , ,  and of ergodicity, are discussed in 
the concluding two sections. 

The discussion of a particular case of our model (with fixed particle number) and the 
comparison of our method with previous work of one of us (Landsberg 1970, Landsberg 
and Johns 1970a, b) will be the subject of a separate investigation. 
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2. Time-based probabilities and averages in the rest frame 

Consider a gas contained in a box which is at rest in an inertial frame I, (in a sense to be 
specified more precisely in 0 4) and occupies in I, the volume Vo. A state i of the gas is, 
for our purpose, sufficiently characterized by specifying the momenta p,", and energies 
e,", (T = 1 , .  . . , N i )  of the gas particles T ,  the total number Ni of which may depend on 
the state i. The superfix 0 indicates that we are using the rest frame I,. With a suitably 
coarse-grained momentum space, p,", and c,", may be restricted to have discrete values. 
Since only a finite total energy is available to the gas particles, the total number K of 
states i (distinct with respect to the coarse graining) which may occur during the time 
development of the gas is also finite. 

The internal state i of the gas may be determined in principle by an observer in I , ,  
at every time to, simply by measuring the momenta and energies of all particles in the 
box at that time. Due to the finiteness of signal velocities, the totality of this information 
will actually reach the observer at some later time to +Ato, with a time lag Ato of order 
l / c  times the diameter 1' of the box. However, Ato can be arranged to be independent of 
to and the gas state i ,  and drops out if one considers only time differences (which is all we 
need to do). Imagine, for simplicity, that all data about gas particles are fed into a 
computer, which then at every time to  indicates the state i of the gas at time to - Ato. 
This device, called state indicator in the following, shall be also at  rest in I , .  We will 
assume that the transition times between different states i are very short as compared 
to the life times of the states themselves, such that at almost all times to the state indicator 
reports a definite state i. The state changes are due to collisions of the gas particles 
among themselves and with the walls of the box. Such events need not be separated by 
space-like intervals, so that the life time of a state i may well be considerably shorter 
than lo/c. 

The main (ergodicity) assumption of this approach is the following (see also § 5). 
Assume the state indicator to be observed in I ,  during a time interval to, and consider 
the total life time T: of a particular state i which is the sum of all time intervals AT? 
for which the reading of the state indicator was i .  Then 

is assumed to exist, and to be independent of the state from which the system is started 
off initially, for all states i. The quantity40 is the time-basedprobability for the occurrence 
of the state i in the rest frame I , .  

For inertial frames I different from I ,  the gas is also defined to be in the state shown 
on the state indicator. This leads to a considerable simplification in our treatment 
compared with most other attempts: state changes are simply point events on the 
straight world line of the state indicator. The states i discussed here thus do not refer to 
momenta and energies of single particles at fixed times t in an inertial frame, unless that 
frame be I,. If one considers that the information which leads to an entry on the state 
indicator is gathered from a sampling surface to = constant in I , ,  then this is also the 
sampling surface for all other frames I in which use is made of the state indicator to 
determine the state of the system. 

A first conclusion follows immediately. If the state indicator is observed from another 
inertial frame I with respect to which I ,  has a velocity w ,  the total time interval of 
observation and the total life time of the state i are T = ?TO and zi = . / T O ,  respectively, 



2132 K Kraus and P T Lundsberg 

with y = (1  - wz/c2 ) -  112. Defining in the frame I time-based probabilities for the state i, 
in analogy to (2.1), by 

one finds 

qi = 4;. (2.3) 
Since therefore the probabilities q; are Lorentz invariant, the index 0 can be omitted. 

Quantities of physical interest can be obtained for a fixed state i from quantities 
belonging to single particles r with values Qp in I ,  by summation over all particles. 
Examples are the total momentum 

" 

r =  1 
Pp = pp 

and the total energy 

r = l  

of the gas in state i in I , .  The averages of such quantities over long times are taken to 
characterize the gas macroscopically. In the frame I, these quantities are obtained in an 
obvious way. For example, 

K N, 

(Po>, = qi 1 P: (2.4) 
i = l  r = l  

and 

i = l  r = l  

are the average momentum and energy of the gas in I,. The index 0 at the brackets 
indicates that the time averaging is performed in I,. 

The frame I ,  is specified here by the condition 

(PO), = 0. (2.6) 
Some physical motivation for this condition will be given in Q 4. The expression (3.4) 
derived in Q 3 for the average momentum in an arbitrary inertial frame implies that I, 
is indeed the only frame in which the gas has zero average momentum. 

Besides (2.6) we make an assumption of spatial homogeneity, which may be formulated 
as follows. Consider a single particle r belonging to state i of the gas. For a sufficiently 
long time interval TO in I , ,  this particle exists during the total time T O  = qirO, according 
to the definition of qi. We now assume, in addition, that the particle spends the fraction 
AVo/Vo of its total life time 7; in any given part AVo of the total gas volume V o  in I,. 
In other words, the time-based proability for the localization of any particle is uniformly 
distributed throughout Vo.  

Under this assumption it makes sense to define, as time averages, densities for 
various physical quantities. The energy density is 
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whereas the momentum density is (l/Vo)(P'), and vanishes according to (2.6). More- 
over, transport properties may be discussed in the usual way. For instance, with the 
particle velocities 

the average momentum transported by the particles through a surface element dSo with 
unit normal eo during a time interval dto becomes 

1 - qi(eO . U:)& dSo dto 
Vo ir 

The argument leading to (2.9) is a standard one in statistical mechanics. If particle r 
belonging to state i crosses dSo in the time interval between to  and to + dto, it transports 
the momentum& through dSo. This will happen if, and only if, the particle is localized 
at time to somewhere inside a cylinder with base dSo and height eo . U: dto, the volume of 
which is AVo = leo.  uE1 dSo dto (see figure 1). If e o .  U; < 0, the particle crosses dSo 
in a direction opposite to e,, in which case p,", has to be counted with a minus sign. 

Figure 1. 

According to the above homogeneity assumption, the probability of finding the particle 
inside A V o  at the arbitrarily chosen instant to  is qi(AVo/Vo). Thus the particle gives the 
contribution 

1 - V o  qi(eO . uyr)p,", dSo dto 

to the average momentum transport through dSo. Summation over particles r and states 
i leads to (2.9). We should mention, however, that in this derivation we have excluded 
from consideration the possibility that some state change affects the particle r in the 
above cylinder just between the times to  and to + dto. This is justified here since we have 
neglected anyway the time required for state changes as compared to the life times of the 
states i .  

We now add an isotropy assumption by requiring that the average momentum 
transport (2.9) in the rest frame I o  gives rise to an isotropic pressure p .  Since for a gas 
with pressure p the quantity corresponding to (2.9) is peo dSo dto, this yields the equation 

(2.10) 



2134 K Kraus and P T Landsberg 

valid for all unit vectors eo. Equation (2.10) also implies 

(2.1 1) 

(2.12) 

where (2.12) follows from (2.11) by summation over three mutually orthogonal unit 
vectors eo. 

In the same way, the energy flux through dSo with unit normal eo in a time interval 
dto if averaged over time yields 

1 C2 

V o  ir V ir 
- 1 qi(eO . dSo dto = 1 qi(eO .&) dSo dto = 0 

according to (2.8) and (2.6). Thus in I ,  the average energy current is zero. 

tensor TEV of the gas in the rest frame I ,  as 
Collecting the quantities obtained so far, one may define an energy-momentum 

(2.13) qv = diagb, P3 P, P O )  

inside the box volume V o  and zero outside. 
Since particles of different kind may be present in the gas, we will finally introduce 

densities and currents for particles of a given type. The various kinds of particles will be 
distinguished by an index s, and we introduce for any state i the symbol 

1 if the particle r in state i is of type s, i 0 otherwise. 

The total number of particles of type s in state i is then Z ~ L  h$), and by averaging over 
time one finds the mean particle number of type s in the rest frame I ,  as 

6;; = 

(2.14) 

The assumption of spatial homogeneity implies that it also makes sense to introduce the 
corresponding density 

1 1 
P," = 0 1 qi6;: = 7 ( N,),. (2.15) 

By the same assumption, the average number of particles of type s crossing a surface 
element dSo with unit normal eo in a time interval dto is 

V ir V 

1 
(dN,), = 1 qi6$)(e0 . up) dSo dto, 

V ir 

and we assume this to be zero for each eo and s, which is equivalent to 

(2.16) 
i r  

The macroscopic situation with respect to the density and flow of any particle type s may 
then be described in I ,  by a four-current density (v = 1, .  . . ,4)  
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inside and zero outside Vo.  The four-divergence of j:v is identically zero. This is not 
true for the energy-momentum tensor TEv as defined by (2.13), due to non-vanishing 
contributions from the boundary of I/' which must be present since the gas alone, without 
the walls, would not be a stable system. 

3. Kinematic weight factors and time averages for a general inertial frame 

Consider an interial frame I with respect to which the box has velocity w. We want to 
define time averages for the gas as seen from I in the same way, as in § 2 for the frame I o .  
The quantities QE occurring there, which refer to a particle r in state i, have to be replaced 
by Qirr which are the quantities QE when transformed from I ,  to I .  

Since by (2.3) the time-based probabilities qi  for the occurrence of a state i are the 
same in all frames I ,  one might be tempted to define time averages in I by the expression 

K N, 
q i Q i r .  

i = l  r = l  

This would lead to an average momentum and an average energy 

q i p i r  and q i c i r ,  
ir ir 

respectively, of the gas in I .  
However, (3.1) and (3.2) are incorrect, as easily seen. Since the particles r composing 

the gas in state i move freely, (Pir, (1/c)eir} transform as four-vectors, while the qi are 
scalars. Hence (3.2) implies that the average momentum and energy of the gas form also 
a four-vector. This, however, is not acceptable (Landsberg and Johns 1967). One way 
to show this is as follows. In the rest frame I ,  the average energy-momentum tensor TEV 
of the gas is given by (2.13). In the frame I one obtains from it by Lorentz transformation 
the tensor 

with the four-velocity 

of the box in I and the Minkowski metric 

qpv  = diag(1, 1, 1, - 1). 

More precisely, Tpv is given by (3.3) inside the world tube occupied by the moving box 
and zero outside. Since the volume of the box in I is I/ = y -  Vo,  one obtains from (3.3) 
with the momentum density (l/c){TI4, TZ4, T'4} and energy density T44 the formulae 

= ' w ( ( E o ) , + p v o )  
C Z  (3.4) 
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and 

V 0  

Y 
( E )  = V [ y 2 ( p 0 + p ) - p ]  = yVOpO+-(./2-1)p 

for the average momentum and energy in I ,  respectively. Equations (3.4) and (3.5) may 
be re-expressed by stating that, instead of {(P), ( l / c ) ( E ) } ,  the quantity 

{ (P), ;(< E )  + PV) ] 
{ (PO) , . - ( (EO) ,+pVO)}  1 = { o , k E o ) , + P v o ) } .  

(3.6) 

is a four-vector (Landsberg and Johns 1967). In I ,  the corresponding quantity is 

(3.7) 

The four-vector transformation law applied to (3.7) leads back to (3.4) and (3.5). The 
four-vector property of (3.6) is connected with the fact that T,, is not divergence-free 
throughout space-time, for otherwise {(P), ( l / c ) ( E ) }  would have to be a four-vector. 

A simple argument will now be given in order to show that ( 3 . 1 )  is indeed not the 
correct formula for time averages in I .  Assume the gas, as seen from I , ,  to be in state i 
during some time interval AT:. Then, by definition of the state i, the particle r with 
momentump; and energy 

C C 

exists during that time interval in I , .  Its velocity is 

so that it will travel during AT: the distance 

AX: = u ~ A T :  

in I , .  In I ,  it thus exists during the time interval 

resulting from {A& CAT:} with (3.8) by a Lorentz transformation. Thus, although in I 
the system as a whole, according to the reading of the state indicator, is found in the 
state i during the time interval 

Azi =  AT:, (3.10) 

the corresponding life times (3.9) of the individual particles r constituting this state i 
differ from (3.10) by the kinematic weight factors 

w .  U: 
1 + 7 .  

C 
( 3 . 1 1 )  

A correct evaluation of time averages in I has to contain these weight factors, and 
therefore leads to the expression 

K N ,  w . u ;  
( Q >  i = l  C qi r = l  C ( l + ~ ) Q i r  (3.12) 
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instead of (3.1). This is found to lead to a consistent macroscopic description of the gas 
in terms of time averages in an arbitrary inertial frame I. 

One can first check that the correct transformation properties (3.4) and (3.5) for the 
average momentum and energy result from (3.12). The only assumption needed for this 
is equation (2.6). If seen from I ,  the momentum, energy and velocity of the particle r are, 
respectively, 

(3.13) 

f i r  = Y(E; + w * pi",), (3.14) 

c2Pir 
Eir 

Uir  = - 

(3.15) 

Applying (3.12) with Qir = p i r  as given by (3.13), we get 

By (2.6) and (2 .Q the first, second and last term are zero. The third term gives 
( y / ~ ~ ) w ( E ~ ) ~ .  By (2.10) and (2.1 1) with eo = w/w,  the fourth and fifth term give ( p V o / c 2 ) w  
and [ ( y  - l )pVo/c2]w,  respectively. Thus, finally, 

Y (0 = ~ W ( ( E 0 > 0 + P V 0 ) ,  

in accordance with (3.4). Similarly we get from (3.12) and (3.14) 

As above, the second and third term vanish, whereas the first term gives Y ( E O ) ~  and 
the last one y(w2/cz)pVo. The result coincides with (3.5). 

The transformation properties (3.4) and (3.5) have been obtained above by applying a 
Lorentz transformation to the energy-momentum tensor TEY. The latter was defined 
in $ 2 to describe in I ,  the energy-momentum densities and corresponding transport 
properties of the gas, averaged with respect to time. An analogous interpretation must 
be possible in I for the transformed energy-momentum tensor q,,. One easily convinces 
oneself that the assumption of spatial homogeneity as formulated in $ 2  allows the 
definition of average densities and transport properties also in the inertial frame 1. 
Formulae like (2.7) for the energy density or (2.9) for the momentum transport remain 
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valid in I if properly modified, which simply means dropping the index 0 everywhere, 
and inserting for all particles r the kinematic weight factors (3.11). We have thus to 
compare the components of T,, with such time averages in order to establish consistency 
of the formalism. 

Equation (3.3) and the familiar physical interpretation of the components of T,, 
yield the following macroscopic quantities as describing the gas in I : 

(i) An energy density 

44 - Y P +(Y2-l)P = Y 2  (3.16) T - 2 0  

(ii) A momentum density 

(3.17) 

(iii) An energy flux density C{ T41, Th2, T,,}, such that the energy flowing in a time 

1 Y 2  
-{T14% T24, T34i = i w ( P o + P ) .  c c 

interval dt through a surface element dS with unit normal e is 

y ' ( P O  + p )  ( w . e) dS dt. (3.18) 

(iv) Flux densities { G l ,  q2, T,,} for the kth component of momentum (k = 1,2,3),  
such that the momentum flowing in dt  through dS with normal e is 

(pe+$w(po+p)(w. e) 1 dSdt. (3.19) 

From the microscopic point of view, the quantities corresponding to (3.16H3.19) are : 

(iv) l Z q i ( l + T ) ( e . u i r ) p i r d S d t .  w.u: 
V ir 

Comparing (i) and (ii) with (3.16) and (3.17), respectively, we obtain equations (3.4) 
and (3.5) (with a factor V- '  = y(V0)-'), which have been checked already. With 
ei,.uir/c2 = pi,, the microscopic quantity (iii) becomes 

f 1 qi (1 + y ) ( e  .pi,) dS dt 
V ir 

2 
V 

Y 2  
VO 

= -(e. (P)) dS dt 

= -(e. w)((E0),+pVo)dSdt 

= y2(po +p)(w . e) dS dt, 
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in accordance with (3.18). Likewise, after inserting pir and uir from (3.13) and (3.15) in 
the microscopic quantity (iv), an elementary calculation reproduces (3.19). 

As a last application of (3.12), consider the four-current density of particles of a given 
type s in the inertial frame I .  By Lorentz transformation of j:, given by (2.17), we find 
in I the four-current density 

is, = {YP,”W Y C P 3  (3.20) 

inside and zero outside the moving volume V. From this macroscopic point of view, the 
average number of s particles in the gas is 

(3.21) 

and the average number of particles of type s crossing a surface element dS with unit 
normal e in a time interval dt is 

(3.22) 

Again this macroscopic description is consistent with the microscopic point of view, 

(dN,) = ( e .  yp,Ow) dS dt. 

The equality of ( N , )  and ( N , ) ,  comes from the fact thatj,, is a conserved current. 

ie the microscopic definitions 

and 

immediately reproduce, with (2.16) and (3.15), the expressions (3.21) and (3.22). The 
decisive condition is now (2.16), which corresponds to the role of condition (2.6) for 
energy and momentum. 

4. Discussion of the rest frame condition (2.6) 

Assume that box and gas together form a closed system, and denote by RO and F o  
momentum and energy, respectively, of the box alone in I o  when the gas state is i. Then 
the total momentum 

9’’ = PP+Ro (4.1) 

do = EO+FP (4.2) 

and the total energy 

are independent of i ,  and the same is true for the centre of mass velocity 

(4.3) 

of the total system. As the total system has to be strictly at rest in I , ,  we have wo = 0 
and thus 9’’ = 0. After time averaging, (4.1) thus yields 

( P o ) o + ( R o ) o  = 0 (4.4) 
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with the average momentum of the box 

(Ro)o = qiRO. (4.5) 
i 

Equation (4.4) characterizes the rest frame I o  uniquely. For our formalism, however, we 
need a characterization which contains quantities referring to the gas (without the box) 
only. We want to show now that equation (2.6) is appropriate for this purpose. 

It is indeed very plausible (eg, from spatial isotropy or reflection invariance arguments) 
that in most cases equation (4.4) will be satisfied only if both (PO), and ( R o ) o  vanish 
separately. In order to discuss this in some more detail, consider the centre of mass of 
the gas alone, which in state i in I ,  has the coordinates 

(with the coordinates x;(tO) of the freely moving particles r), and which is moving in state i 
with the constant velocity 

(4.7) 

According to our general assumptions, any state change i + j in I, occurs instan- 
taneously, at time to’ say. Assume that such state change is due to either 

(i) a collision of two or more particles r belonging to state i at some collision point 
xo’ inside the box, producing some other particles s belonging to state j at the 
same point xo’, or 

(ii) a collision with a wall of the box of one or more particles r belong to state i ,  
which are either absorbed, or produce some other particles s belonging to state j 
at the point of collision. 

It is easily seen from (4.6), (4.7) and the conservation or energy and momentum in the 
collision process that neither X o  nor X o  are changed during state transitions of type (i). 
A state change (ii), however, in general leads to discontinuous changes Xf(to’) + XY(r0’) 
and X: -, X; of both X o  and 8O. 

If one assumes, however, that collisions of gas particles with the walls are always 
elastic, then (4.6) together with energy conservation for the colliding particles immediately 
implies that X o  does not jump even in type (ii) transitions: X;(to’) = X:(tO’). In this 
particular case, the centre of mass of the gas thus describes a continuous path Xo( to)  in I,, 
The total distance travelled by it during a time interval TO is 

to 1 (qi  + Ai)X: 
i 

with some correction terms Ai which vanish for TO + CO, according to the definition of the 
probabilities q i .  This distance obviously cannot exceed in length the diameter of the 
box. Dividing (4.8) by to  and taking the limit 7’ + 00 thus yields 

cqix: = 0 
1 

(4.9) 

or, with (4.7) and E: Eo (independent of i) since no energy is exchanged with the walls, 

ie, condition (2.6). 
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But even if inelastic collisions of gas particles with the walls are permitted, equation 
(2.6) is still to be expected to hold in I , ,  at least as a very good approximation, for a large 
class of systems. Assume, for the following, that the energy changes AEo due to inelastic 
collisions are very small as compared to the total energy E: of the gas in any state i. This 
is true for almost all cases of physical interest, since E; contains the rest energies of all 
gas particles. Now consider a collision of gas particles with the wall, occurring at some 
point xo, during which an energy AEo is transferred to the box. If Eo and X o  denote the 
total energy and the centre of mass coordinates of the gas before the collision, (4.6) yields 
for the centre of mass coordinates after the collision : 

With AEo/Eo 

X o + A X o  = ( ~ 0 x 0  - ~ ~ 0 x 0 ) .  
E O  - A E O  

c1 << 1 we get, neglecting quadratic and higher order terms in a. 

A X o  = a(Xo-xo).  

Thus any discontinuous jump of the centre of mass in I ,  is at most of the order of 
magnitude do, with 1' the box diameter in I ,  and a << 1 .  Moreover, such jumps are not 
expected to occur in some preferred direction, but instead to nearly compensate each 
other during a sufficiently long period of observation, and thus to be negligible for the 
overall centre of mass motion of the gas. This leads again to equation (4.9). 

By (4.7) and (4.9), 

C 2  1 q.-P? = 0. ' E :  ' 

Putting 

E ;  = ( E , ) , + A E ;  = ( ~ O ) ~ ( i + p ~ )  

with p i  = AE;/( E'), << 1 (according to our previous assumption) and 

(4.10) 

this leads to 

if quadratic and higher order terms in pi are again neglected. If one also drops the linear 
terms, (2.6) is again recovered. This drastic procedure, however, is not necessary, since 
the average Xi 4,PiPp is expected to be nearly zero anyway. Otherwise the momenta Pp 
and their weights 4Ji (constrained by (4.10)) in this average would have to be particularly 
correlated, which is very implausible for the irregular type of motion of the gas particles 
considered here. 

Due to the collisions with the gas particles, the box vibrates and, as a whole, performs 
an irregular 'Brownian' motion in I , .  For a heavy box with sufficiently massive walls, 
however, neither its vibrations nor the motion of its centre of mass will be macroscopically 
visible. It is thus justified, as we have done here, to consider the box as strictly at rest and 
of constant shape and volume in I , .  
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5. Ergodicity 

Following the usual scheme of ergodic theory (Farquhar 1964), we will now try to 
re-obtain the time averages discussed so far in an alternative way, namely, as averages over 
a suitable ensemble of systems which are macroscopically identical copies of the single 
system considered before. Let us first consider such an ensemble in the rest frame I , .  

We imagine a very large number Jf of such systems, all at rest in I,, which are 
selected at random in the sense that the selection procedure does not depend on the 
microscopic states i of these systems at the time of selection to’. Then, if each one of these 
systems evolves in time in the way discussed in 5 2 and .Af is large enough, just Nqi of 
them are expected to be in state i at time to’. Moreover, by the same argument, this 
distribution of states i in the ensemble will be preserved in time, ie, at any other time 
to # to’ one will also find N q ,  systems (but in general different ones) in the state i. In 
this way the time-based probabilities qi also determine, quite naturally, the relative 
frequencies of the states i in the ensemble at every fixed time of observation to. 

But even more follows from the above assumption of random selection. First, the 
distribution of states i in the ensemble is expected to be given by the probabilities qi not 
only for fixed times to in I , ,  but on any other space-like hypersurface as well, eg, a 
space-like hyperplane corresponding to a fixed time t in some other inertial frame I .  If 
we imagine, as in 6 2, that to each system of the ensemble a state indicator is attached, then 
this means that the relative frequencies for the different readings i of these state indicators 
in the ensemble are given by qi also at any fixed time t in an arbitrary inertial frame I .  
Thus the probabilities qi are Lorentz invariant also with respect to their role as relative 
frequencies of states i in an ensemble of identical systems. 

Second, assume one is looking at the ensemble, in an arbitrary frame I ,  more closely 
by taking into account at time t not only the state indicator readings i but also the 
occurrence of the individual particles r which constitute the states i .  Again we expect, 
from the complete randomness of the microscopic situation, that at any time t the 
relative frequency of each particle r in the total ensemble will be found to agree with the 
time-based probability for the occurrence of the same particle r in the history of a single 
system in I .  The latter, according to 4 3, is qi times the kinematic weight factor (3.11). 

Thus if we finally define, for quantities to which the particle r in state i gives the 
contribution Qir as discussed before, ensemble auerages at any fixed time t in an arbitrary 
inertial frame I by summing over all particles r in the single systems which are present 
at that time t and averaging over the total ensemble, we obtain 

which coincides with the formula (3.12) for time auerages of a single system. In particular, 
in the rest frame I ,  we recover the time averages C ,  qiQ$ used in Q 2. 

This argument makes it plausible that the time averages for a single system are 
indeed representative for the average properties of a suitable ensemble of systems. Thus 
our systems share with ergodic ones the property that time averages and ensemble 
averages coincide. Therefore we called our crucial hypotheses (2.1) an ergodicity 
assumption. Moreover, because time averages and ensemble averages coincide in all 
inertial frames I .  our systems can be considered to be ergodic in a Lorentz invariant 
sense. 

The correspondence between our ergodicity condition and the usual ones should 
however not be taken too literally. We will illustrate this for the particular case in which 
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the total energy Eo of the gas in I ,  is conserved. Clearly, then, all states i = 1,. . . , K 
occurring in our formalism belong to the same energy. But no further specification of 
these states or the probabilities qi is required here, whereas in ergodic theory the set of 
possible states is usually taken to cover the whole energy shell, and the qi are derived 
from Lebesgue measure in phase space. Accordingly, our formalism includes a des- 
cription of systems which are not ergodic in the most narrow sense of the word. 

If, for instance, besides Eo there exists another constant of motion C, then the states 
i = 1,. . . , K occurring in our formalism belong to fixed E o  and C, thus forming a proper 
subset of all energetically possible states. Now assume C to be a macroscopic quantity, 
such that states i with different values Ci are macroscopically distinguishable. Then a 
selection of ‘macroscopically identical’ systems will produce an ensemble of systems with 
a fixed value of C as well. If now assumption (2.1) is true for sets of states i = 1,. . . , K 
with given Eo and C, our previous reasoning applies without any modification. 

But even if C is not macroscopic, the situation is not entirely hopeless. In this case, a 
macroscopically selected ensemble necessarily contains systems with different C values. 
Since, however, C is now a ‘microscopic’ quantity, it might happen that ensemble 
averages for ‘macroscopic’ quantities like pressure, density etc are not changed too 
much if one replaces the macroscopically selected ensemble (with different C values) by 
any one of its sub-ensembles belonging to fixed C. Such sub-ensembles, however, again 
fit into our formalism. 

The final aim of our theory is a ‘macroscopic’ description of a given single system. 
The ensemble averages considered so far may be used for this purpose only if, in the 
representing ensemble, the mean square deviations of all quantities considered are 
sufficiently small. As in ordinary statistical mechanics, this will be true for large systems 
(ie, with large particle numbers) only. Ensemble averages then correspond, as well known, 
to the properties of such systems in thermal equilibrium. 
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